RS-232 / RS-485 / CENTRONICS CONTROLLER FOR GRAPHIC MODULES

FOR DIRECT CONNECTION TO BELOW LISTED GRAPHIC MODULES:

| EA $7160-7 N E L$ | 160 | $\times 128$ | dots |
| :--- | ---: | :--- | :--- | :--- |
| EA $7240-6 N E L$ | 240 | $\times 64$ | dots |
| EA $7240-7 N E L$ | 240 | $\times 128$ | dots |
| EA $7320-7,9 N C$ | 320 | x 240 | dots |
| EA $7640-6 N$ | 640 | $\times 64$ | dots |
| EA $7640-7,5 N 3 C$ | 640 | $\times 200$ | dots |
| EA $7640-8,5 N C$ | 640 | $\times 400$ | dots |
| EA 7640-8,8BWC3 640 | $\times 480$ | dots | |
| EA 7720-8,5NEL | 720 | $\times 400$ | dots |

FEATURES

* SUPPORTS ALL KNOWN LCD- GRAPHIC DISPLAYS (MONOCHROME)
* CONNECT EITHER TO RS-232 OR RS 485 OR CENTRONICS OR TO 8-BIT BUS
* TERMINALMODE VT-52 I.E. $640 x 400$ DISPLAY: 80/40 CHAR., 25/50 LINES
* INTELLIGENT GRAPH COMMANDS LIKE DRAW LINE, DELETE, SET DOTS,
* DISPLAY WINDOWS, TEXTROTATION IN 90° STEPS
* POWER SUPPLY: VDD $=+5 \mathrm{~V} \pm 5 \%$, approx. 150mA
* DISPLAY SELECTION WITH DIP-SWITCHES B
* KEYBOARDCONNECTION: MF-102 OR 8x8 MATRIX (RS-232 AND RS 485 ONLY)
* INTERFACE PARAMETER SETTING WITH DIP-SWITCHES A
* INCLUDING TEST- AND DEMO PROGRAMS FOR PC'S
* 5 INTEGRATED CHARACTER SETS ($8 \times 8,8 \times 16,16 \times 16,16 \times 32,32 \times 56$)
* BIG NUMERALS (56x80) FOR EASY DISPLAY READING, INTEGRATED
* DOWNLOADABLE CHARACTERSETS, I.E. KYRILLIC, FRENCH, ETC.
* ADRESSABLE: SEVERAL EA 9710's ON A SINGLE SERIAL INTERFACE * NEG. DISPLAY SUPPLY VOLTAGE V ${ }_{\mathrm{EE}}$ INTEGRATED, DIGITAL SETABLE

OPTIONAL

* VOLTAGE REGULATOR FOR 8-12 VOLTS INPUT: EA OPT-REGLER ORDERING INFORMATION
RS-232- TERMINAL FOR LCD-GRAPHS, KEYB. CONNECTOR EA 9710-V24 RS 485- TERMINAL FOR LCD-GRAPHS, KEYB. CONNECTOR CENTRONICS- / BUS- TERMINAL FOR LCD-GRAPHMODULES VQLTAGE REGULATOR FOR 8-24 VOLTS INPUT EA 9710-485 EA 9710-BUS EA OPT-REGLER FARIOUSTEST AND DEMOPROGRAMS ON FLOPPY DISC EA DISK9710

CONTENTS

GENERAL 2
PUTTING INTO OPERATION 3
COMMANDS IN VT52-TERMINAL MODE 4
COMMANDS IN GRAPHIC MODE 5
PARAMETER HANDOVER IN GRAPHIC MODE 5
COMMON COMMANDS FOR TERMINAL- AND GRAPHIC MODE 6
ADRESS SETTING FOR SEVERAL EA 9710's ON A SINGLE SERIAL INTERFACE 6
BUILT IN CHARACTER SETS 7
EA 9710-V24 CONNECTING 8
EA 9710-485 CONNECTING 8
EA 9710-BUS, CENTRONICS CONNECTING 9
DISPLAY CONNECTING 9
AT-KEYBOARD (MF-102) CONNECTING 10
MATRIX-KEYPAD CONNECTING 10
V. 24 / RS 485 DATA TRANSFER 11
DIMENSIONS, LOCATION OF CONNECTORS AND DIP SWITCHES 12

GENERAL

We designed our EA 9710 controller especially for simple and timesaving installation to operate all customery monochrome LCD-graphic displays. The onboard Graphcontroller MSM 6255 supplies all needed signals (LP, CP, FLM, M, UD0..3, LD0..3) for driving LCD-graphic modules. Display sizes in ranges up to 720×400 respectively 640×480 dots can be connected. The usual negative supply voltage for Graphic displays is also generated on board.
This outstanding 8-bit microcontroller system allows thanks to a 1 MBit display memory a very comfortable use of advanced programming-commands like "ASCII-characters to coordinate (X,Y)" or "Box to coordinate ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2, \mathrm{Y} 2$)" etc. When Terminalmode is choosed, a VT- 52 terminal will be emulated. Commands like "Carriage Return" and "Line Feed" and all Cursor movements are available. Also mixed operation in both modes is allowed.

OPERATING WITH RS-232, RS 485, BUS, CENTRONICS

EA 9710 boards can be connected either to RS-232 (EA 9710-V24), RS 485 (EA 9710-485) or to CENTRONICS- Interfaces (EA 9710-BUS). Interface parameters are set with DIP- switches according to table 15. A performance increase of your processor system can be achieved by direct connecting the processor bus to the EA 9710-BUS. By doing that, the main processor is relieved from unnessesary computing work for display outputs.
Additional it is possible to connect an AT keyboard (MF-102) or a Matrix keypad (8x8 keys), for EA 9710-V24 and EA 9710-485 only. Also switched output gates may be used.

EA 9710

BLECTRONIC ASSEMBLY

PUTTING INTO OPERATION

- Test mode: After connecting the display with flat type cable to the appropriate plug, you should set DIP-B switches (1..7) into "Off" position and switch 8 to "On" (factory setting, see table 1). The Module now is in Test- mode. Various display initial screens are carried out automatically. Vertical strips should alternate with entire black- respective white displays.
- Demo mode: When previous test is done well, set DIP-B switch No. 8 to "On" and switches No. 1..7 to the Type number of the Display (table 1). Now you can watch a little demo program.
- Standard mode: If previous tests have been performed correctly, set DIP-B switch No. 8 to "Off" (Standard mode).

Table 1
Display Selection

COMMANDS INTERMINAL MODE

After power on the module is ready for receiving in terminal mode. All received characters are shown in ASCII format. Line carriage return is done automatically and, if display is filled, the page is scrolling to the top. The extended VT-52 terminal commands are listed in table 2.

Terminal mode (extended VT-52)					
Command	Codes				Description
Backspace (decimal: 08)	${ }^{\wedge} \mathrm{H}$				Delete characters left of cursor, close up remaining line
Linefeed (decimal: 10)	\wedge				Cursor to next line, position of columns remain
Formfeed (decimal: 12)	${ }^{\wedge} \mathrm{L}$				Clear display, cursor to left hand, top corner (position 1,1)
Carriage return (dec.: 13)	${ }^{\wedge} \mathrm{M}$				Cursor to left hand border
Cursor home	ESC	H			Set cursor to left hand, top corner (position 1,1)
Cursor up	ESC	A			Move cursor to next line above
Cursor down	ESC	B			Move cursor to next line below
Cursor right	ESC	C			Move cursor one character to the right
Cursor left	ESC	D			Move cursor one character to the left
Cursor scroll to top	ESC	I			Cursor to line above, scrolling top border, than cursor to the left
Save cursor position	ESC	j			Save actual cursor position
Load cursor position	ESC	k			Set cursor to saved position
Set cursor to position	ESC	Y	s+32	z+32	Set cursor to absolute position column s and line z
Cursor on	ESC	e			Cursor on (visible)
Cursor off	ESC	f			Cursor off (invisible), conserves cursor type
Block cursor	ESC	1			Cursor type: inverted block
Block cursor, flashing	ESC	2			Cursor type: inverted block, flashing
Underline cursor	ESC	3			Cursor type: underline
Underline cursor, flashing	ESC	4			Cursor type: underline, flashing
Delete display image	ESC	E			Clear screen, cursor to top lleft hand position 1,1)
Delete line	ESC	I			Delete cursor pointed line
Delete line	ESC	M			Delete cursor pointed line, remaining image scrolls up
Delete to the end of line	ESC	K			Delete line from cursor position onward (incl.cursor position)
Delete to the end of page	ESC	J			Delete total image beyond cursor position (incl. cursor position)
Delete line up to cursor	ESC	0			Delete line up to cursor position
Delete image up to cursor position	ESC	d			Delete image up to cursor position
Delete character	ESC	P			Delete character at cursor position, move back remaining line
Insert blanks	ESC	@			Insert a blank at the place of cursor position
Insert new line	ESC	L			Insert blank line in place of actual line; cursor moves to the left
Set to inverted letter	ESC	p			Next images are shown inverted
Switch off inverted letters	ESC	q			Next images are shown standard
Display inverted	ESC	r			Inverse total display
Display standard	ESC	S			Standard display
Autom. line overflow on	ESC	v			Set cursor from right hand border automatic to the start of new line
Autom. line overflow off	ESC	w			Cursor stays at right hand border

Table 2: Commands in Terminal Mode

ELECTBONC ASSEMBLY

COMMANDS IN GRAPHIC MODE

Keying in: "ESC" "ESC" "G" changes to Graphic Mode. Letters x and y in table 3 are used for input of coordinates, where the origin of coordinate $(0,0)$ is situated in the left hand, top display corner.

Graphic mode								
Command	Codes							Description
Clear display	D	L						Delete display
Fill display	D	F						Fill display
Invert display	D	I						Invert display
Set graph mode	V	n1						n1: 1=set; 2=delete; 3=exor (dots, lines)
Line pattern	F	x						Binary 16-bit form of line patterns
Set dot size	Q	n1	n2					Set dot size $\mathrm{n} 1=$ widht, $\mathrm{n} 2=$ hight in dots
Dot	P	x1	y1					Set dot to coordinates $\mathrm{x} 1, \mathrm{y} 1$
Straight line Straight line up to	$\begin{aligned} & \mathrm{G} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{x} 1 \\ & \mathrm{x} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{y} 1 \\ & \mathrm{y} 1 \\ & \hline \end{aligned}$	x2	y2			Draw straight line with act. dot size/ line pattern Draw line from last stop to $\mathrm{x} 1, \mathrm{y} 1$
Rectangular	K	x1	y1	x2	y2			Draw rectangular with act. dot size / line pattern
Clear range	L	x1	y1	x2	y2			Delete a defined display area
Fill range	E	x1	y1	x2	y2			Fill a defined display ara
Invert range	I	x1	y1	x2	y2			Invert a defined display area
Copy range	C	x1	y1	x2	y2	x3	y3	Copya defined area to $\times 3$, y3 (multiples of 8 only)
Box	B	x1	y1	x2	y2			Draw blank box with border (actual dot size)
Box with shadow	N	x1	y1	x2	y2	n1		Box with border + shadow at $\mathrm{x} 2, \mathrm{y} 2$ ($\mathrm{n} 1=$ distance)
Set text mode	M	n1						n1: 1=set; 2=delete; 3=exor; 4=replace; 5=invert
ASCII- character	A	x1	y1	n1				Set sign n 1 to pos. $\mathrm{x} 1, \mathrm{y} 1$ setzen
Character chain	Z	x1	y1	\ldots	<cr>			Display a character chain (...); Carrige return= end
Rescue image	S	n1						Copy visible image to buffer n 1 ($1<=\mathrm{n} 1<=$ max.)
Get image	R	n1						Copy image from buffer memory n 1 into visible image
Divert graphic transfer	J	n1						Divert into image buffer n1 (0:= visible image)
Load range of image (upload)	U	x1	y1	Datei				Load a defined image area to $\mathrm{x} 1, \mathrm{y} 1$ (multiples of 8)
Save range of image (download)	0	x1	y1	x2	y2			Save image range via V. 24 resp. RS485 (multipl. of 8)

Table 3: Commands in Graphic Mode

PARAMETER HANDOVER IN GRAPHIC MODE

Coordinates may be handed over in two ways:

Abstract

- ASCII format: If commands are given in "CAPITAL LETTERS", the terminal expects values for coordinates (x, y, n) in numerals $0 . .9$, separated by comma. Each command has to be closed either with semikolon or with return. $$
\text { i.E. set point at coordinate } 258,10: \quad \text { P258,10; }
$$ - Binary format: If commands are given in "small letters", the terminal expects binary values. Coordinates (x, y) must be transmitted as 16 bit binary values (low-byte first, followed by high-byte). Other parameters (n) must be transmitted as 8 bit binary values too, (insert no separating byte between coordinates and parameters). Commands don't need any closing byte.

i.E. set point at coordinate 258,10 :

ELECTRONIC ASSEMBLY

COMMON COMMANDS FOR TERMINAL- AND GRAPHIC MODE

Several special commands are applicable in Graphic Mode as well as in Terminal Mode. Parameter handover follows the same capital/small-letter rules as described under Graphic Mode.

Common commands for terminal- and graphic mode						
Command	Codes					Description
Graphic mode	ESC	ESC	G			Change to graphic-mode, image remains on display
Terminal mode	ESC	ESC	T			Change to terminal-mode, image remains on display
Select font	ESC	ESC	F	n1	n2	n1:1-10 get font from Eprom n1:11-20 get upload Font n2: 0: $0^{\circ} ; 1: 90^{\circ}, 2: 180^{\circ}, 3: 270^{\circ}$; rotation
Upload font	ESC	ESC	U	n1	Datei	Load individual defined font Nr . $\mathrm{n} 1=11-20$
Font into upload area	ESC	ESC	Y	n1		Safe actual font as an upload fontn1: 11-20
Increase contrast	ESC	ESC	P			Increase display voltage for one step
Decrease contrast	ESC	ESC	M			Decrease display voltage for one step
Contrast default	ESC	ESC	Z			Set display voltage to default
Auto transmit on	ESC	ESC	E			Enable auto transmit of keyboard strokes
Auto transmit off	ESC	ESC	A			Disable auto transmit of Keyboard strokes
Query matrix keypad	ESC	ESC	B			Query actual status of matrix keypad
Select	ESC	ESC	S	n1		Select EA 9710 by adress n 1 ($\mathrm{n} 1=255$: all)
Deselect	ESC	ESC	D	n1		Deselect EA 9710 by adress n 1 ($\mathrm{n} 1=255$: all)
Pause	ESC	ESC	H	n1		$\mathrm{n} 1: 1 . .255 \times 0,1$ seconds pause

Table 4: Common Commands for Terminal- and Graphic Mode

ADRESSING SEVERAL EA 9710's ON A SINGLE INTERFACE

Commands "Select" and "Deselect" allow to adress and operate several terminals connected to a single interface bus. The individual terminal adress is stored in EPROM (27C1000) at adress \$00AD. EPROM value \$FF (factory setting) can be reprogrammed any time to another value.

Figure 1

ELECTRONC ASSEMBLY

BUILT IN CHARACTER SETS

Terminal is delivered with 6 different character sets, already installed. Up to 10 more character sets may be added by download.
Because of the fact, that character sets does not always content all characters from 0 to 255, table 5 shows the available characters. For instance the built in font No. 6, "BIG DIGITS", contents only numerals $0 . .9$ and signs "-", "/", ".", ":".
All characters are available in Text- and in Graphic Mode. Listed graphmode coordinates references to the left hand top corner of the character.

Font	Size in pixels	ASCII- Range	Description	
1	8×8	$0 . .255$	Extended ASCII-code	
2	8×16	$0 . .255$	Extended ASCII-code	
3	16×16	$0 . .255$	Extended ASCII-code	
4	16×32	$32 . .127$	ASCII-code	
5	32×56	$32 . .63$	Numbers, punctuation, ...	
6	32×56	$64 . .95$	Capital letters	
7	32×56	$96 . .127$	Small letters	
8	56×80	$45 . .58$	Big numbers	
9				
10				

Table 5

Figure 2

EXAMPLE FOR DISPLAY CONTROL

To demonstrate, how a complete display readout is "programmed" with a few commands, an example is printed below. Figure 3 shows the result of this demoprogram. Applied for that was a $1 / 4$-VGA display with 320×240 dots resolution.

Command	Description	Result (Display)
ESC ESC F4,0 Z0,0,Temperatur	Font No. 4, Text on Coordinate 0,0	Tenperatur
N4,120,300,220,8	Box with gray shadow on Coordinate $(120,300)$	
$\begin{gathered} \text { ESC ESC F8,0 } \\ \text { Z40,130,25.4 } \end{gathered}$	Font No. 8, Text on Coordinate $(40,130)$	
$\begin{gathered} \text { ESC ESC F4,1 } \\ \text { Z8,198,Innen } \end{gathered}$	Font No. 4, Text on Coordinate $(8,198)$	
$\begin{gathered} \text { ESC ESC F3,0 } \\ \text { Z264,130, }{ }^{\circ} \mathrm{C} \end{gathered}$	Font No. 3, Text on Coordinate $(264,130)$	-
$\begin{aligned} & \text { G160,40,160,105 } \\ & \text { G155,100,300,100 } \end{aligned}$	Line from $(160,40)$ to $(160,105) \ldots$	
$\begin{gathered} \text { G160,50,190,95 } \\ \text { T220,45 T300,70 } \end{gathered}$	Line from $(160,50)$ to $(300,70)$	V
$\begin{gathered} \text { F255 G160,80,230,70 } \\ \text { T250,30 T300,90 } \end{gathered}$	Line Pattern No. 255, Line from $(160,80)$ to $(300,90)$	

Figure 3

Table 6

CONNECTING EA 9710-V24

On board RS-232- drivers generate true RS-232 level with voltage amplitudes of approx. $\pm 10 \mathrm{~V}$. This guarantees safe transmissions up to 57600 Baud, even on long lines (up to15 meters). Communication parameters are set on DIPswitch A according to table 15 (see page 11)

Input Datas takes connector J2 on EA 9710-V24. Pinout can be seen in aside table. Connecting i.E.to a PC is particulary simple with cable EA KV24-9, which is available as an option. Using this cable enables direct (1:1) plug in of EA 9710-V24 into serial PC- ports (i.E.

RS-232			
connector J2			
Pin	Symbol	In/Out	Function
1	NC	-	n/c
2	DCD	-	Connected with pin 3 and pin 8
3	DSR	-	Connected with pin 2 and pin 8
4	TxD	Out	Transmit Data
5	CTS	In	Clear To Send
6	RxD	In	Receive Data 7
RTS	Out	Request To Send	
8	DTR	-	Connected with pin 2 and pin 3
9	NC	-	n/c
10	GND	-	Ground

If cable EA KV24-9 is not used, proceed according to figure 4. In case, that wires for handshakes are not available, pins RTS and CTS must be bridged on EA 9710-V24 . In this way EA 9710-V24 supports a special mode for software handshakes XON / XOFF.

Figure 4

CONNECTING EA 9710-485

RS422 / RS485 connector J2		
Pin	Symbol	Function
1	NC	n/c
2	Data In -	Receive Data
3	Data In +	Receive Data
4	Data Out -	Transmit Data
5	Data Out +	Transmit Data
6	HS In -	Handshake
7	HS In +	Handshake
8	HS Out -	Handshake
9	HS Out +	Handshake
10	GND	OV, Ground

On board RS422 / 485- drivers are generating differential voltages with approx. $\pm 5 \mathrm{~V}$ amplitudes. This guarantees an extremely safe transmission up to 57.600 Baud, even on very long lines (up to 1.200 meters). Communication parameters are set on DIP- switch A according to table 15.
Input Datas takes connector J2 on EA 9710-485. Pinout can be seen in aside table. Connecting i.E. to a PC is particulary simple with cable EA KV24-9, which is available as an option. Using this cable enables direct (1:1) plug in of EA 9710-V24 into serial PC- ports (i.E. COM1, 9-pin. SUB-D connector).

If cable EA KV24-9 is not used, proceed according to figure 5. In case, that wires for handshakes are not available, pins RTS and CTS must be bridged on EA 9710-485. In this case, EA 9710-485 supports a special mode for software handshakes XON / XOFF.

ELECTRONC ASSEMBLY

CONNECTING EA 9710-BUS, CENTRONICS

Connector J3 is assigned for connection to Centronics interface. A 25-pin Centronics connector (male) can be crimped direct onto a flat type cable, and allows in this combination i.E. direct operation with PC.
It's also possible to operate the terminal directly via Centronics interface on a processor system bus. Hereby the input "Strobe" takes over the function of a low active "Enable". Data takeover happens at the L-H edge. On fast processor

Centronics bus connector J3							
Pin	Symbol	Level	Function	Pin	Symbol	Level	Function
1	Strobe	L	Data transfer	2	NC	-	n/c
3	Data 0	H/L	Bit 0 LSB	4	VDD	H	+ 5 V
5	Data 1	H/L	Bit 1	6	NC	-	n/c
7	Data 2	H/L	Bit 2	8	NC	-	n/c
9	Data 3	H/L	Bit 3	10	GND	L	OV Ground
11	Data 4	H/L	Bit 4	12	GND	L	OV Ground
13	Data 5	H/L	Bit 5	14	GND	L	OV Ground
15	Data 6	H/L	Bit 6	16	GND	L	OV Ground
17	Data 7	H/L	Bit 7 MSB	18	GND	L	OV Ground
19	Ack	L	Acknowledge	20	GND	L	OV Ground
21	Busy	H	In progress	22	GND	L	OV Ground
23	GND	L	OV Ground	24	GND	L	OV Ground
25	VDD	H	+ 5 V	26	NC	-	n/c

Table 9 systems should be waited until pin "Busy" is on low level, before transfer new datas.

DISPLAY CONNECTION

On board are four rows solder terminals for direct connection (1:1 link) to most customary LCDGraphic Modules.

Display connector J5			
Pin	Symbol	Level	Function
1	FLM	H/L	Frame Signal
2	LP	H/L	Data Latch Signal
3	CP	H/L	Data Shift Clock
4	M	H/L	Alternate Signal
5	VADJ	-	Contrast adjustment
6	VDD	H	Positive supply for electronic
7	VSS	L	Negative supply for electronic
8	VEE	-	Display voltage
9	D0	H/L	Display Data 0
10	D1	H/L	Display Data 1
11	D2	H/L	Display Data 2
12	D3	H/L	Display Data 3

Table 10

Display connector J6			
Pin	Symbol	Level	Function
1	FLM	H/L	Frame Signal
2	LP	H/L	Data Latch Signal
3	CP	H/L	Data Shift Clock
4	M	H/L	Alternate Signal
5	VADJ	-	Contrast adjustment
6	VDD	H	Positive supply for electronic
7	VSS	L	Negative supply for electronic
8	VEE	-	Display voltage
9	DU0	H/L	Display Data 0 (Upper)
10	DU1	H/L	Display Data 1 (Upper)
11	DU2	H/L	Display Data 2 (Upper)
12	DU3	H/L	Display Data 3 (Upper)
13	DL0	H/L	Display Data 0 (Lower)
14	DL1	H/L	Display Data 1 (Lower)
15	DL2	H/L	Display Data 2 (Lower)
16	DL3	H/L	Display Data 3 (Lower)

Display connector J7 and J7-2			
Pin	Symbol	Level	Function
1	FLM	H/L	Frame Signal
2	LP	H/L	Data Latch Signal
3	CP	H/L	Data Shift Clock
4	DOFF	H	H: Display on (L:OFF)
5	VDD	H	Positive supply for electronic
6	VSS	L	Negative supply for electronic
7	VEE	-	Display voltage
8	DU0	H/L	Display Data 0 (Upper)
9	DU1	H/L	Display Data 1 (Upper)
10	DU2	H/L	Display Data 2 (Upper)
11	DU3	H/L	Display Data 3 (Upper)
12	DL0	H/L	Display Data 0 (Lower)
13	DL1	H/L	Display Data 1 (Lower)
14	DL2	H/L	Display Data 2 (Lower)
15	DL3	H/L	Display Data 3 (Lower)

CONNECTING (MATRIX-) KEYPAD

Connector J4 allows connection to single keys or to Matrix- keypads with up to 8×8 keys. The contact bouncing is eliminated by software. Please take into consideration, that this keypad functions are supported by version RS-232 and version RS 485 only.
Keys are connected to input- and output gates, where each input gate is shunted by a $100 \mathrm{k} \Omega$ pullup resistor. Up to 8 keys may be connected to a single output gate.
In order to recognize fast double keystrokes, the output gates have to be decoupled. Best way to achieve that is using Schottky- Diodes (i.E. BAT 43).
On multiple keystrokes (>2) each individual key

Matrix - Keypad connector J4					
Pin	Symbol	Function	Pin	Symbol	Function
1	GND	OV Ground	2	VDD	+5V
3	OUT 1	output line 1	4	OUT 2	output line 2
5	OUT 3	output line 3	6	OUT 4	output line 4
7	OUT 5	output line 5	8	OUT 6	output line 6
9	OUT 7	output line 6	10	OUT 8	output line 8
11	IN 1	input column 1	12	IN 2	input column 2
13	IN 3	input column 3	14	IN 4	input column 4
15	IN 5	input column 5	16	IN 6	input column 6
17	IN 7	input column 7	18	IN 8	input column 8
19	GND	OV Ground	20	VDD	+5V

Figure 6

Transmitting keystrokes

After the terminal is swichted on, all keystrokes will be stored. For automatic transmitting of each change on input gates, the command "automatic transmission on" (ESC ESC E) must be given. It's also possible, to query the actual status of keystrokes by commands: ESC ESC B. This makes sense, especially when several terminals operate on one line, it prevents a datacrash when single terminals are transmitting arbitrary.

Identifications

In order to distinguish transmitted datas (Matrix, MF-102) from each other, an ASCII-character 'm' will be sent first via the RS-232/RS485 interface to identify the Matrix keypad. Than, the keystroke numbers follow in binary format, finally followed by a closing byte (binary: 0). On each change, pressing and releasing a key, all key strokes will be still transmitted. The number of an individual key can be evaluated:
Number of key $=($ output -1$) * 8+$ input, output and input must be a number between 1 and 8 .

CONNECTING AT-KEYBOARD (MF-102)

An AT-keyboard can be connected to connector J3. Please be aware, that keyboard functions are supported by versions RS-232 and RS 485 only.
Received MF-102 keyboard datas are buffered in terminal memory and will be transfered via RS-232/RS485 interface. The output starts only after command "Auto Transmit On" is given. When operating several terminals on one line,

MF-102 Keyboard connector J3					
Pin	Symbol	Function	Pin	Symbol	Function
1	CLK	Clock line	2	-	n/a
3	DATA	Data line	4	VDD	+ 5V
5	-	n/a	6	-	n/a
7	-	n/a	8	-	n/a
9	-	n/a	10	GND	OV Ground

(Solder side)
Figure 7
receiving the command "Automatisch senden aus" to prevent datacrashes when single terminals are transmitting arbitrary. No conversion (i.E.) to ASCIIcharacters takes place, therefore various on market available keyboards can used. An identification string, like it's usual on matrix-keypads, won't be issued.

ELEGTRONIC ASSEMBLY

RS-232 / RS 485 DATA TRANSMITTING

DIP-switch A allows presetting of all customery transmission parameters up to 57600 Baud. Voltage level correspond to RS 232C Standard (approx. $\pm 10 \mathrm{~V}$ with EA $9710-\mathrm{V} 24$), respectively specification from
RS 485 (EA 9710-485).
This Terminal is equiped with an integrated 2 kByte buffer for commands. Before the buffer is filled totally, an overflow warning is shown in time to the transmitter via RTS line. If a transmission without handshake is choosed, the overflow warning is given by XON and XOFF codes (software handshake). However, this software handshake is active only, when the command "Auto Transmit On" was given before.

DIMENSIONS, POSITION OF CONNECTORS AND DIP- SWITCHES

SOLDER BRIDGES

In order to adapt EA 9710 to various hardware configurations, several bridging strips are placed at the solder surface of the board. This solder bridges are presetted by factory. Therefore no change should be made normaly. In case, that that bridges must be altered for special purposes, we ask you to contact us.

Figure 9 view of solder surface

Bridge	Function	Description
1	MF102	Closed bridge for an AT-Keyboard on modules EA 9710- V24, EA 9710-485. Open bridge for EA 9710-BUS !!
2	$4,6 \mathrm{MHz}$	Generates an external pixel clock frequency for graphic controller. leust be set individually according to display model. Only one closed solder bridge is allowed.
3	$9,2 \mathrm{MHz}$	

ELECTRONIC ASSEMBLY

